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Interaction and deformation of viscoelastic particles: Nonadhesive particles
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A viscoelastic theory is formulated for the deformation of particles that interact with finite-ranged surface
forces. The theory generalizes the static approach based upon classic continuum elasticity theory to account for
time-dependent effects, and goes beyond contact theories such as Hertz and that given by Johnson, Kendall,
and Roberts by including realistic surface interactions. Common devices used to measure load and deformation
are modeled and the theory takes into account the driving velocity of the apparatus and the relaxation time of
the material. Nonadhesive particles are modeled by an electric double layer repulsion. Triangular, step, and
sinusoidal trajectories are analyzed in a unified treatment of loading and unloading. The load-deformation and
the load-contact area curves are shown to be velocity dependent and hysteretic.
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[. INTRODUCTION compliant materials cannot be purely elastic, but that vis-
coelastic effects must occur when they are deformed. There

The interactions of macroscopic bodies, microscopic paris a wealth of experimental data on adhesive soft bodies that
ticles, and macromolecules are mediated by their surfaceshow hysteretic behavior that depends upon the details of the
forces, and much attention has focussed upon measuririgading-unloading cycl§15—29. The present study is moti-
these forces directly and upon developing quantitative theavated by earlier computatiorj9] that showed a correlation
ries for them. The two generic forces that are well estabbetween hysteresis and deformability. More recent works
lished, the van der Waals attraction and the electric doublgl3,14], which traced this hysteresis to velocity dependent
layer repulsion, have a range of up to 100 nm or so. Depenckffects, was limited by the artificial dissipation introduced
ing upon the elasticity of the bodies, their mutual interactioninto the elasticity model and by the lack of determinism in
can be strong enough to deform them, particularly under athe time scale. The present work formulates the general
applied load or when pulled apart. Despite this the variougquations for the deformation of viscoelastic particles and
theoretical treatments of particulate interactions generally asises a well-defined model for the material viscoelastic re-
sume rigid, undeformed bodies. Similarly, direct force mea-sponse. A unified treatment of loading and unloading is
surements usually neglect the effects of deformation in theigiven and indeed the algorithm can be used for an arbitrary
interpretation. This assumption can introduce serious errorgrajectory. The behavior of particles that interact with an ex-
such as an underestimate of the magnitude of the force, or ggonential repulsion is analyzed, this being the simplest
inference of the wrong separation in a measurement. model of the electric double layer interaction. The next paper

The elastic deformation of bodies has been studied in enin the series will treat adhesive particles.
gineering and mechanics, where it has obvious practical im- There have been a number of earlier studies of particle
portance. The most common approaches combine the classieformation and crack propagation that have attempted to
cal equations of elasticity theory with the assumption that théncorporate viscoelastic effects, both experimerid,31
bodies only interact when in contact. The oldest such theorand theoretical32—43. All of these have been contact theo-
is due to Hertz, who gave the deformation of two nonadheries that have not taken into account the range of the inter-
sive particles under load. The two most common theories foactions between the particles. In addition many of the studies
adhesive particles are due to Johnson, Kendall, and Robertsave been limited by the approximate way that viscoelastic
[1] (JKR) and to Derjaguin, Muller, and Topord2] (DMT). effects have been incorporated into the theory. A peculiarity
All of these theories are contact theories, which means thatf these contact theories is the strong distinction that is
they ignore the finite range of the surface forces. Taking intalrawn between loading and unloadirigr bonding and non-
account the influence of realistic surface force gives rise tdonding, or crack healing and growthas a number of au-
highly nonlinear equations for the consequent elastic deforthors attes{35,40—42; those that give actual results restrict
mation. Nevertheless these have been solved by a number tifem only to one case or the other. Although Grah&Bs]
authors and it has been shown that finite range effects can l@nd Ting[37] claimed to have solved the nonmonotonic non-
important, particularly in the precontact regime and in theadhesive contact problein principle, their procedures do
vicinity of the edge of the contact regidi@—14]. Surface not appear to have been appligdpractice As mentioned
forces are also known to determine the shape and deformabove, the noncontact algorithm given here is applicable to
tion of a crack or fracture tip and to influence strongly its an arbitrary trajectory and a number of results for nonmono-
propagation. tonic loads are given.

This paper also deals with noncontact forces, since it ana- In fracture mechanics it is common to introduce a
lyzes deformable particles that interact with a double layewelocity-dependent adhesion energy into the JKR contact
repulsion. It goes beyond the earlelasticstudies by treat- theory, and such aad hocquantity can be empirically fitted
ing viscoelasticeffects. There is reason to believe that veryto measured datf30]. Barthel and Roux43] inserted this
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guantity in the JKR and DMT equations and solved the con+to relaxation or creep, viscoelastic materials are initially stiff
sequent differential equation to model certain experimentaand soften over timeEy,>E, . The simplest type of vis-
data that showed a velocity-dependent adhesion. Falsafi  coelastic material is characterized by the two elastic limits
[31] replaced Young’s modulus in the equilibriufstati ~ and a characteristic relaxation time
JKR result with a time dependent creep compliance function.
As pointed out by Huiet al. [41], this is likely a poor ap- C(t) = i:i+ Eoc_Eoe_t/T 3
proximation because in general the latter cannot be removed E(t) E. EqE. '
from the temporal convolution integral over the history of
the particle(see below.

A number of studies are based on the work of TjB§]

Materials of this sort are analyzed in detail here. It should be

i pointed out that the algorithm can be modified to encompass
and of Schapery38,39. Greenwood and Johns4o)] fol materials with multiple relaxation times or with qualitatively

ngg? S;ng; rcyliz] tlﬁeszzrpgg;ylcnc?nfgﬁatrlgee fzznc\t/grl:tg)yna'lnéongifferent viscoelastic behavior, such as the liquidlike materi-
: ) als studied by Schapef89] and by Huiet al. [41], C(t)
stant. They also used Baranblatt's approximate crack shapgC L Ct™ 0<m<1. which corresponds 6. =0
to study crack openingparticle unloading Schapery[39] 0 1| " f P | ponas 8., 'I h
later introduced a power law creep compliance function that VI'SCOE a.St'C deformation INVOIVes a time '”te.g“"? over the
gives liquidlike behavior at long times. This was used by HyiPrevious history of the material. The generalization of the
et al. [41] in a JKR contact theory for the loading phase of
adhesive solids. Liet al.[42] extended this study to unload-
ing, (crack propagation Finally, and of more direct rel-
evance to this work concerned with nonadhesive, repulsive t -2 p(h(s,t’))
interactions, there have been a number of prior studies O\U(f,t)—u(f,to):f dt’ —| ds 9
viscoelastic Hertzian contaf82-34,36,3T. o mE(t-t")

elastic deformation equation given above to viscoelastic ma-
terials is

t -2 o :
Il. MODEL AND ANALYSIS zf dt’—f ds sKr,s)p(h(s,t")),
to, E(t—t")Jo
A. Elasticity

(4)

Linear elasticity theory gives the local deformation of the
two solids due to their mutual interaction. The local separa-

tion between the surfaces may be writf@n13] where p(h(s,t))=p’(h(s,t)h(s,t) is the time rate of
change of the pressure. The particles are assumed stationary
h(r)=ho(r)—u(r). (D up to timety, h(r,t)=0, t<t,, and, if interacting or in

Here ho(r)=hy+r?/2R is the surface separation of the un- contact, have at tha_t time flx_ed defprmatlc_xr_n(r_,to)
deformed solids at a distanae from the axis. For two = U=(I' bo), .c_orrespondllng to static elastic equmbnum. It
may be verified that this viscoelastic expression reduces to

spheres with radiR; and R, the effective radius iR ! : . - ) e
—R; 1+ R, . For a sphere interacting with a planar substratethe static elastic result whdg(t) = const. This expression is

this is the actual radius. More generalRmav be given in essentially equivalent to that used by earlier authors
. - Viore g R may be g . [34,37,4] in the context of contact theories of viscoelastic
terms of the principal radii of curvature of the soli#4].

The total elastic deformation is given §9,45] interactions. Here it is used for realistic finite ranged surface
9 ’ forces. The expression is justified by the so-called correspon-

-2 p(h(s)) —2 (= dence principle, in which the material propertyoung'’s
u(r)=—E dsf=?f ds sKr,s)p(h(s)), modulug becomes time dependent, but the boundary condi-
™ r—s 0 tions are unchanged.e., the kernel is that of the elastic

2 half-space approximation of continuum elastiity
where the elasticity parameter is given in terms of Young’s. Be%ausg thellocal selparatpn deptlands uponfthehdell‘orma—
modulus and Poisson’s ratio of the bodiesE2/(1 :If?nt,t elg ovelsa ?onbmearl mtde%ra_teql{[atlonHort € attr:er
— vi)/ElJr(l— vg)/Ez, and where the kernel is expressible . at could, In principie, be solved by iteration. However the
: T ! . time-convolution integral complicates the matter and sug-
in terms of the complete elliptic integral of the first kind

[9,45]. Herep(h) is the pressure between two infinite planesgests a Laplace transform may be in order. An alternative is

. . . to cast the equations in the form of a differential equation.
at a separatiom. The form appropriate for electric double |7 . : . :
. ) L Using the creep compliance function given above, &,
layer interactions is given below.

differentiating with respect to time yields

B. Viscoelasticity

In viscoelasticity theory the effective Young’s modulus is U(r,t)zi tdt/ﬁef(tft’)/ff dsw
time dependent and its reciprocal is sometimes called the T, E-Eo Ir—s
creep compliance functiorG(t) = 1/E(t). Simple viscoelas- .
tic materials are characterized by short-time and long-time 2 P(h(s,b))
behavior,C(t)—1/Ey, t—0, andC(t)—1/E.., t—o%. Due mEy) T |r—§
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1] 2 p(h(s,t')) where the partial deformations represent the contribution
=— J dt’j d ’ from each mode and are defined by
7E to | _SI
—2¢; p(h(s,t'))
h(s,t t)=—n dt’ - ”’TIJ s—gq - (10
+u(r,t)—u(r,to)} fdopﬁr(_ ) u(rH=—2 - - (10

In view of the fact thatr,,=ce, for i =n this reduces to

h(s,t h(s,t
Ut )= = dop( S, )|)r_r;( (s:tg))

Dihs).
~ 76, J =5 ©) =U.(1,) — (1 to). (11)

As above, differentiation with respect to time yields

=_—7_1[u(r,t)—um(r,t)+ux(r,t0)—u(r,to)]

Here u.. is the static deformation that would occur in the
long-time limit if the pressure profile were fixed at its current

value, ui(r,t):—ui(r,t)/ri—%f d%' (12

(6)  Where the rate of change of pressure depends upon the drive
velocity and the total rate of change of deformation, as given
above. Hence if the current partial deformations are known,

As mentioned above, if the trajectory starts from the fully this represents a set of coupled linear integral equations for

relaxed state, which is normally the casepift)=0, t<to,  theu(r,t). These may be obtained by iteration by essentially

then u.,(r,to) —u(r,to) =0. However this term is here re- the same procedure as in the single relaxation time case.

tained explicitly to account for the possibility of a sudden Note that because one needs only evaluate a single convolu-

impulse applied at=t,. The rate of change of the pressure tion integral per iteration, there is negligible increase in the

IS computational time required in going from one to several
relaxation times. Likewise, the memory required increases

p(h(r,t))=p’(h(r,t))[hy(t)—u(r,t)]. (7)  negligibly, since the deformations are linear in the number of

grid points whereas the kernal is quadratic. The deformation

Hence if the current deformation is known, which means thatrajectory again follows by simple time stepping;(s,t

p’ (h(r,t)) is fixed, then Eq(5) represents dinear integral  +A;) =u;(s,t) +Au;(s,t).

equation for the rate of change of deformation. It can be

solved by iteration usingreciselythe same algorithm that D. Load and pressure

has been developed for the static elastic prodl@r3]. It is

P LU}

. . . . . In this paper the mutual pressure acting between the sur-

then a simple matter of time stepping to solve the d|fferent|a¥aces is tz‘fkepn to be a Iineaeroisson-BoItzgmann form for the
i ifi j + . .

equation for a specified trajectorio(t), u(r,t+A,) electric double layer repulsion, plus a short-range soft wall

=u(r.t)+Au(r t). Perversely, the viscoelastic problem ac- o ision that is derived from arl/*2 intermolecular repul-
tually turns out to be less demanding computationally thar;y,

the corresponding elastic case.
p(h)y=Pe "+ P, (z5/h)°. (13

C. Multiple relaxation times . . .
The second term is only effective at very small separations;

The formalism and algorithm is readily extended to ma-jn this work z,=0.5 nm andP,=P. A Debye length of
terials with multiple relaxation times. Suppose that the creep.—1=1 nm corresponds to 0.1 M monovalent binary aque-

compliance function is of the form ous electrolyte, ané=10" Nm™?2 corresponds to a surface
n potential of about 85 mV, which is about the upper limit of
C(t) = cetn 8 what is typically e.nco_untered. _
® Z ! ® The total load is simply the integral of the surface force
density,

with, for example,c;= E‘ EI+1 TakingE,=E., Eqiq .

=, and 7,=0o, this reduces to the simpler form given F(t)zzﬂf p(h(r,t))rdr. (14
above in the case that=1. Usually one would havé&, 0

>E>--->E,, and 7o<m<---<7,_1, and if rj<t

<74, thenC(t)~1/E; . The total deformation is This applies for both the elastic and the viscoelastic case.

For the present repulsive pressure, as the bodies are
driven towards each other the load becomes more positive
u(r,t)—u(r to)ZE ui(r,t (9) and the deformation more negative. This i§ calleq loading.

i Conversely, unloading corresponds to an increasimgre
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positive) deformation and decreasing load as the centers of —u(t) [«h 1 87RP2 ,
the bodies are separated. To distinguish between the de- u(t)= {——— \/ e~ <Nog™xht,
formed and undeformed separatiohg(t) will be called the Bo 7. K 19
position, anch(t) will be called the separation. (19
The solution that vanishes &t 0 is
E. Slowly varying deformation approximation : /

The so-called slowly varying deformation approximation u(t)=Ale”"-e"7], (20
was introduced by Attard and Parkiéd] to account for the where
elastic deformation in the weak deformation limit. It turned
out to give analytic results and to be quite accurate for the hoE-1_g-1
precontact situation. Here an analogous approximation is de- _70 * 8wR e~ «ho (21)
veloped for the viscoelastic problem. The approximation 1-«hr K '
consists of replacing the deformation everywhere by its
value on the central axis, Sinceh<0, one sees that the deformation is always negative,

u(r,)~u(0)=u(t). (15) which corresponds to flattening. The parametir controls

which of the two values of the elasticity dominate. For ma-
L ) _ terials with short relaxation times, or long-ranged interac-
This is inaccurate away from the central axis, but since thgions or for slow driving velocities, this reduces to the static
pressure rapidly decays to zero in this region, the error introg|astic result withe = E... In the opposite limit one obtains
duced is negligible, at least for small deformations. In thisya static elastic result correspondingte- E,.

approximation Eq(5) becomes A formal series solution can be given to the above when
the denominator is retained, but wiku(t) neglected in the

: -1 4Pk (= exponent. However this is not particularly useful and it is a
u() =—1[u(t)—u.()]+ Eo fo dsexp[— x[ho(t) little inconsistent to retain higher powers ft) while ne-
_ _ glecting powers olu(t), since the two functions are of the
+s2/2R—u(t) ]} ho(t) —u(t)] same order.

In the slowly varying deformation approximation the

_~1 4Pk 7R force is given by[9]
=—[u®—u()]+ E 50 &P~ k[ho(t)

_ _ F(t)=27Rx P exp[— k[ ho(t) —u(t)]}. (22
—u(t) ]} ho(t) —u(t)], (16) , S :
This result turns out to be the same as the Derjaguin approxi-
. ) mation, except that the planar interaction free energy per unit
which may be solved fou(t), area is calculated at the actual separati¢t), (as given by
the approximatiopy rather than at the nominal separation
f(t)ho(t) —[u(t) —u.(t)]/7 ho(t).
u(t)= 141D ; 17 The slowly varying deformation approximation can also
be used to obtain the response to a harmonic perturbation,
) which enables a spectroscopic analysis of the viscoelastic
where f(t)=\87xRPY/Egexp{—«lho()—u(®)}. In this interaction. A driving functiorhy(t)=ho+ 7 sinet to linear
equation order produces a response in the central deformaiigi
=u(tg) + v sin(wt+ ¢). Linearization of the differential equa-

-2 o ) tion with respect top and v and equating the coefficients of
um(t):WszwJO ds Pexp{ — k[ ho(t) +s%/2R—u(t)]} the trigonometric functions yields
- EO _ - EO
= E . f(t). (18) tan 6+ ¢)—Ewm_ (23
: . : . . and
For a given trajectoryy(t), the deformatioru(t) is readily
obtained from the equation fai(t) by simple time stepping; c cosé
a calculator or spreadsheet suffices. V=136 cos 6+ &) (24

An analytic solution to this differential equation can be
obtained at large separations whéft) can be neglected \here
compared to unity in the denominator, and whergt)<1

and can be neglected in the exponent. For a linear trajectory, tang=—(1+cEy,/E.)/wr(1+cC),
ho(t)=hy+ ht, taking to=0, the approximate differential
equation becomes and
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Force (uN)

0.0 ' ‘ ‘ ‘ ‘ ho(0.0) (amm)
0 0.5 1 1.5 2 2.5 3
time (ms) FIG. 2. Test of the slowly varying deformation approximation.
The relaxation time ig=1 ms, all other relevant parameters as in
FIG.. 1. Log_d re_laxation following a sudden step in position. Fig. 1. A constant driving velocity ofh,=5 (uppe) and of
Following equilibration atho=—5 nm, over 0.1 a a 2 nmstep 1 y;ms ! (lower) is used. The symbols represent the exact calcu-
inward has been made tg=—7 nm (upper curvesor outward to |ation, the solid curves are the full differential equation, EL),
ho=—3 nm (lower curves. The plain and bold curves are for and the dashed curves are the analytic approximatioriZBy. The
= 17 and_22 rpls respectlvely.OThe_zother paramet_ezrs Bre inset shows the corresponding forces normalized by the radius for
=10'Nm™, «""=1 nm, Eo=10Nm 2 E.=10° N m-*% and ho=1 ums %, with the bold curve representing the infinitely rigid
R=10 um. The inset shows the force on a log scale, with the f'nalcase(no deformatioi
force beingF*=1.59 and 0.66um, for loading and unloading,

respectively. o . .
smaller contribution fronE,, during the finite time of the

N ==y step. There is an asymmetry evident between loading and
c= V8 kRP/Eg expf — [ ho—u(to)]}- unlgading. It requiresya great)ér increase in load to movge the
particles together a given amount than to separate them.

Figure 2 shows the precontact deformation as the particles
are uniformly driven together. The deformation is negative,

The corresponding force is also harmonke(t) =F(to)[ 1
+asin(wt+ x)], and using Eq(22) one has

—vsing which corresponds to flattening of the particles under their
tanxzm (295 mutual repulsion. At a given positidm,, the deformation is
greater at the slower driving speed because the soft compo-
and nent of the elasticity has more time to take effect. Conversely
and consequently, the force is greater at the faster driving
a=k\n°+v°—275vcose. (26) speed because the surface separation of the effectively stiffer
material is smaller at a given positignot shown.
In the low frequency limitw—0, it is straightforward to The slowly varying deformation approximation is quite

show that¢—0, y—0, v— —knu(te)/[1—«xu(ty)], and good and it accurately accounts for the viscoelastic behavior
a—knl[1—ku(ty)], where the central deformation in the prior to contact. The numerical solution of the differential
slowly varying deformation approximation is the solution of equation, Eq(17), may be described as quantitatively accu-
u(ty) = — EoC/E..k. rate. The analytic approximation, E¢R0), works well at
large separations but overestimates the deformation closer to
. RESULTS contact whernxu(t) is no longer negligible.
The actual load at a given position is compared with that
Figure 1 shows the resultant force when two particles irfor rigid particles in the inset of Fig. 2. It can be seen that the
contact and equilibrated &,=—5 nm are suddenly moved requisite load is reduced because the surface separation be-
+2 nm. The change in position is almost a step changeween deformed particles at a given position is greater than
since its duration0.1 m9g is small compared to the relax- that between undeformed particles. This effect is quite clear
ation time of the material. The initially large repulsion im- in the elastic Derjaguin approximation, E@2). It may be
mediately following the step is characteristic of a stiff mate-seen from the inset that this approximation is quite accurate
rial, Eo=10'" Nm~2. Over time the repulsion decreases asfor the two slowly varying deformation expressions.
the material relaxes to accommodate the new configuration; Force spectroscopy was carried out on the particles at a
on long time scales the particle appears softér, mean position ohy=2 nm, which corresponds to a mean
=10° Nm~2. The behavior of two materials with different load of 61.0 nN and a mean deformation ©0.46 nm. A
relaxation times are compared. It may be seen thaty be  sinusoidal change in position of amplitude 0.1 nm was made
obtained from the slope of the force difference on a log plotand the response in force monitored using the exact vis-
(inseb. At hg=—5 nm itis 0.5, and atho=1.5 nm itis coelastic response, E(h). Figure 3 gives the relative ampli-
0.66r (not shown. The material with the longer relaxation tude and the tangent of the phase angle. The curves are rela-
time shows a higher peak force due to the fact that there is &ively smooth and featureless. The amplitude of the response
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0.1 1 time (ms) =
0.05 0
0

log @t bo (nm)

FIG. 3. Spectroscopic response in force to an oscillatory drive of E|G. 5. Force hysteresis loops for a triangular drive. The param-

amplitude,=0.1 nm applied abouto=2 nm. The symbols are the  eters are as in Fig. 1, with=1 ms, and with drive velocities of
exact calculation, and the curves are the slowly varying deformatlor|1|0: +

o he full bei h I | +1, =2, and +5 ums %, from inside to outside, respec-
approximation, the full curve being the complete result, &), tively. The bold curve is the rigid, undeformable particle result, and

and_the al_most coincident dashed curve bemg th(_e analytic approxXip e triangles and crosses are the static, equilibrium resulEfor
mation to it, Eq.(25). Herer=1 ms, the logarithm is base 10, and —10° and 16° N'm™2, respectively

all other relevant parameters as in Fig. 1. The inset shows the exact
(bold) and approximatéplain) force for a driving frequency ob

— 200 rad s 1. Figure 4 carries out the force spectroscopyhgt —5

nm. The relatively high load of 1.08N used here is suffi-
cient to cause noticeable surface flattening. The slowly vary-
Qng deformation approximation is not designed to cope with

regimes occurs ab=0.787"* (cf., discussion of Fig. L At
this frequency the phase angle is a maximum at 7°, and |
decays to zero at the two frequency extremes.

Figure 3 also tests the numerical slowly varying deforma
tion approximation Eq(17), and the analytic approximation

ehavior in contact is qualitatively similar to that shown in
ig. 3 prior to contact, with some quantitative differences.
The peak in the phase is more pronounced, with the phase
“angle now being 38°, and it has shiftedde=2/r, (cf., the

S . inset to Fig. ). Also at this frequency the step in amplitude
tiq (2?)' Thfetrllatter t\IN? are ”eaf'y Ctp'nC'_?_Em’ IVVh'lch ShO.WS corresponds to about a factor of 4 increase in this case, com-
e value of the analytic approximation. The slowly varying /. %0 2 factor of 1.3 in Fig. 3.

deformation approximation tends to overestimate the phase Perhaps the most common type of deformation measure-

factor and to underestimate the amplitude at low frequencie_%ent is concerned with particle loading and unloading using

bUt. overall desqribes the harmonic response very weII._ It '3 triangular drive velocity. Such a measurement is modeled
tedious but straightforward to show that in this approxima-;

tion the peak in the phase lag occurs at a frequenggiven in Fig. 5 for several drive speeds. Negative values of the
by (wor)2=(1+CEJ/E.)/(1+¢). For hy=2 nm  this position would correspond to interpenetration of the unde-

. “1_0 85 | bl ith th formed surfaces, as evinced by the almost vertical force be-
gives wo “=0.85r, In reasonable agreement with the exactyyeen the rigid particles of the figure @—0". For de-

calculation. formable surfaces such negative values are allowed and,
since the deformation is negative, they correspond to positive
0;7 separationsh(r,t) =hg(r,t)—u(r,t). The force is increas-

. ingly repulsive in this regime. What is also noticeable is the
087 amplitude (x10) hysteresis between the loading and the unloading branches,

07 and the fact that this increases with drive speed. On the load-
067 ing branch, the force-position curve for the viscoelastic par-

g'i: ticles lies between the equilibrium elastic results Ear and

0‘3 | Eq. Slow driving speeds show a more gradually increasing

0'2 | repulsion and lie closer to the long-term elastic value, as one

might expect. As the speed increases the loading curves
move towards the equilibrium result for the instantaneous
elastic modulus, which has a more sharply increasing repul-
sion. On the unloading branch, there is initially a rapid de-
crease in the force immediately following the turning point.
FIG. 4. Exact response to a driven oscillation under a high loadThis behavior originates in the nature of the change in the
[F.(ho)=1.08 uN, ho=—5 nm andn=1 nm, the logarithm is surface shape, as will be discussed shortly. Much of the un-
base 10, all other parameters as in the preceding figlitee line  loading branch lies beneath the static curve corresponding to
simply connects the measured data points. E.., and for slow enough driving speed one can well imagine

0.1 A

-2 -1 0 1 2 3

log wt
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FIG. 6. Contact radius hysteresis loops for the same cases as the FIG. 7. Surface profiles for thé,| =5 um s™* case of Fig. 6. A
preceding figure. Contact was defined as a local surface separatignapshot of the local separation is plotted as a function of the lateral
of less than 1 nm. radius every 0.4 ms, or every 2 nm fraomg=10 to ho=—10 nm

and back. The right hand panel is for loading, and the left hand
that the two branches will coalesce on it. The fact that thepanel is for unloading. The loading profile lag=10 nm is essen-
force upon unloading is less than that on loading at a givetially undeformed.
position gives the appearance that the surfaces come in to
contact(i.e., measurably interalcbn approach at a greater the edge, which is what they would do in the elastic case.
position than they come out of contact upon retraction. Therhis is the reason that the contact radius and the force drop
reason for this will also be discussed shortly. so rapidly on the initial part of the unloading branch. Over

Figure 6 shows the contact radius for the triangular drivethe time of unloading the flattened regions relax to their
just discussed. The surfaces were defined to be in contagiore naturally curved shape. Even though the final unload-
wherever the local separation was less than 1 nm, which igg profile ath,=10 nm is beyond the range of the surface
the decay length of the double layer repulsion used here. Faprce, at the high velocity of the figure full relaxation has not
any finite ranged surface force the definition of contact isyet occurred, and one can see that the surfaces still retain a
arbitrary, but any reasonable definition gives qualitativelymemory of their contact(The duration of the unloading
similar behavior to that shown in Fig. 6. In general the con-pranch was 2 ms, which is twice the relaxation time: 1
tact area increases with increasing applied load. As for théns) This remnant flattening means that for a given position
force, the hysteresis between loading and unloading inthe surfaces are at a greater separation on unloading than on

creases W|th driVing Velocity and the StatiC instantaneou%ading, and hence the force and the contact area go rap|d|y
elastic result provides an upper bound for the loading brancky zero upon unloading, as shown in Figs. 5 and 6.

that is approached as the driving velocity is increased. Finally, Fig. 8 shows the unloading force for several
At first sight it might appear counterintuitive that the par- maximum applied loads. The unloading branches initially
ticles that are driven faster, and that are therefore effectivelyiffer from each other, as they must as a consequence of the
stiffer, exhibit a greater contact area on approach than thgysteresis. But after sufficient time all the unloading curves
more slowly driven particles. The explanation becomes cleagoalesce on a single envelope. This behavior is very similar
upon examining the loading region where the contact firstg that of adhesive particles previously explofd®,14. At

becomes nonzero. For the fastest driving velocity this occurggrge separations where the force is weak, the loading and
just beyondhy=1 nm, which indicates little flattening has

occurred. Conversely, contact does not occur until albgut
=—0.5 nm for the slowest driving velocity, due to substan-
tial surface flattening. In other words, one should not confuse .05 - ]
deformation with contact area for particles that interact with 10%
finite surface forces. g 004 10°
The contact radius hysteresis is similar to the force hys-2 -
teresis in that it is due to the rapid decrease immediately¥ 105 0 5 10
following the turnaround. This behavior is particularly = o.02
marked for the fastest driving velocity. A picture of what is
occurring may be gleaned from Fig. 7. The asymmetry be- 9017 \
tween the loading and unloading surface shapes is due to th
finite time over which the measurement is performed. It is
clear that on loading the surfaces become relatively flattened
and their shape particularly at the center is largely deter-
mined by the geometry and the position rather than by the FIG. 8. Force loops for different penetrations. The parameters
elastic parameters. Immediately after the turnaround, the flare as in Fig. 6, with a drive velocity dhy|=5 ums™t, and
tened regions separate as a whole rather than peeling frotarning points oth,=0, —3, -5, —7, and— 10 nm.
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-10 -8 -6 4 2 0 2 4

Position (nm)
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unloading forces are exponentially repulsive, as is evident byelocity and the relaxation time of the materials, with the

the linear talil in the logarithmic inset. unloading force and contact radius being less than the load-
ing at a given position. This behavior originated in the dif-
IV. CONCLUSION ferences in the contact region dynamics due to the viscoelas-

) ) ) _tic nature of the materials. On loading the surfaces fold into
This paper has been concerned with the viscoelastic dgsgntact from the edge, whereas during unloading they pull
formation of particles and surfaces during their interaction. Aapart as a whole rather than peel apart from the edge, retain-
general formulation of the problem for finite-ranged surfacemg their flattened shape for a short time after contact.
forces was given, and a numerical algorithm was presented The present theory for viscoelastic deformation and inter-
for materials with one or more relaxation times. The algo-ctions is very general and the algorithm is robust and com-
rithm is applicable to both loading and unloading, and indeetutationally simple. In the next paper in the series it will be
to an arbitrary trajectory. Results were presented for a repubypplied to adhesive particles. In future work it is hoped to
sive double layer interaction for step, triangular, and sinUpresent analytic results for viscoelastic Hertz and JKR con-
soidal drives. An analytic approximation applicable 10 t5ct theories, and to analyze quantitatively experimental data

slowly varying deformations was developed and shown to bgsing the full theory with realistic finite-ranged surface
accurate in the precontact regime. forces.

In general at a given position the repulsion upon loading
was less than that between rigid particles, and it lay between
that of elastic particles corresponding to the short and long-
time limits of the creep compliance function. Force spectros-
copy revealed a peak in the phase lag and a step in the The support of the Australian Research Council through
amplitude, which is characteristic of materials with a singlethe Special Research Center for Particle and Material Inter-
relaxation time. Hysteresis was observed between the loadaces at the lan Wark Research Institute is gratefully ac-
ing and unloading branches, and it increased with drivingknowledged.
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