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Interaction and deformation of viscoelastic particles: Nonadhesive particles
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A viscoelastic theory is formulated for the deformation of particles that interact with finite-ranged surface
forces. The theory generalizes the static approach based upon classic continuum elasticity theory to account for
time-dependent effects, and goes beyond contact theories such as Hertz and that given by Johnson, Kendall,
and Roberts by including realistic surface interactions. Common devices used to measure load and deformation
are modeled and the theory takes into account the driving velocity of the apparatus and the relaxation time of
the material. Nonadhesive particles are modeled by an electric double layer repulsion. Triangular, step, and
sinusoidal trajectories are analyzed in a unified treatment of loading and unloading. The load-deformation and
the load-contact area curves are shown to be velocity dependent and hysteretic.
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I. INTRODUCTION

The interactions of macroscopic bodies, microscopic p
ticles, and macromolecules are mediated by their surf
forces, and much attention has focussed upon measu
these forces directly and upon developing quantitative th
ries for them. The two generic forces that are well est
lished, the van der Waals attraction and the electric dou
layer repulsion, have a range of up to 100 nm or so. Depe
ing upon the elasticity of the bodies, their mutual interact
can be strong enough to deform them, particularly under
applied load or when pulled apart. Despite this the vario
theoretical treatments of particulate interactions generally
sume rigid, undeformed bodies. Similarly, direct force me
surements usually neglect the effects of deformation in th
interpretation. This assumption can introduce serious err
such as an underestimate of the magnitude of the force, o
inference of the wrong separation in a measurement.

The elastic deformation of bodies has been studied in
gineering and mechanics, where it has obvious practical
portance. The most common approaches combine the cl
cal equations of elasticity theory with the assumption that
bodies only interact when in contact. The oldest such the
is due to Hertz, who gave the deformation of two nonad
sive particles under load. The two most common theories
adhesive particles are due to Johnson, Kendall, and Rob
@1# ~JKR! and to Derjaguin, Muller, and Toporov@2# ~DMT!.
All of these theories are contact theories, which means
they ignore the finite range of the surface forces. Taking i
account the influence of realistic surface force gives rise
highly nonlinear equations for the consequent elastic de
mation. Nevertheless these have been solved by a numb
authors and it has been shown that finite range effects ca
important, particularly in the precontact regime and in t
vicinity of the edge of the contact region@3–14#. Surface
forces are also known to determine the shape and defo
tion of a crack or fracture tip and to influence strongly
propagation.

This paper also deals with noncontact forces, since it a
lyzes deformable particles that interact with a double la
repulsion. It goes beyond the earlierelasticstudies by treat-
ing viscoelasticeffects. There is reason to believe that ve
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compliant materials cannot be purely elastic, but that v
coelastic effects must occur when they are deformed. Th
is a wealth of experimental data on adhesive soft bodies
show hysteretic behavior that depends upon the details o
loading-unloading cycle@15–29#. The present study is moti
vated by earlier computations@9# that showed a correlation
between hysteresis and deformability. More recent wo
@13,14#, which traced this hysteresis to velocity depende
effects, was limited by the artificial dissipation introduce
into the elasticity model and by the lack of determinism
the time scale. The present work formulates the gen
equations for the deformation of viscoelastic particles a
uses a well-defined model for the material viscoelastic
sponse. A unified treatment of loading and unloading
given and indeed the algorithm can be used for an arbitr
trajectory. The behavior of particles that interact with an e
ponential repulsion is analyzed, this being the simpl
model of the electric double layer interaction. The next pa
in the series will treat adhesive particles.

There have been a number of earlier studies of part
deformation and crack propagation that have attempted
incorporate viscoelastic effects, both experimental@30,31#
and theoretical@32–43#. All of these have been contact theo
ries that have not taken into account the range of the in
actions between the particles. In addition many of the stud
have been limited by the approximate way that viscoela
effects have been incorporated into the theory. A peculia
of these contact theories is the strong distinction that
drawn between loading and unloading,~or bonding and non-
bonding, or crack healing and growth!, as a number of au-
thors attest@35,40–42#; those that give actual results restri
them only to one case or the other. Although Graham@36#
and Ting@37# claimed to have solved the nonmonotonic no
adhesive contact problemin principle, their procedures do
not appear to have been appliedin practice. As mentioned
above, the noncontact algorithm given here is applicable
an arbitrary trajectory and a number of results for nonmo
tonic loads are given.

In fracture mechanics it is common to introduce
velocity-dependent adhesion energy into the JKR con
theory, and such anad hocquantity can be empirically fitted
to measured data@30#. Barthel and Roux@43# inserted this
©2001 The American Physical Society04-1
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quantity in the JKR and DMT equations and solved the c
sequent differential equation to model certain experime
data that showed a velocity-dependent adhesion. Falsafiet al.
@31# replaced Young’s modulus in the equilibrium~static!
JKR result with a time dependent creep compliance funct
As pointed out by Huiet al. @41#, this is likely a poor ap-
proximation because in general the latter cannot be remo
from the temporal convolution integral over the history
the particle~see below!.

A number of studies are based on the work of Ting@35#
and of Schapery@38,39#. Greenwood and Johnson@40# fol-
lowed Schapery@38# in simplifying the time convolution in-
tegral by replacing the creep compliance function by a c
stant. They also used Baranblatt’s approximate crack sh
to study crack opening~particle unloading!. Schapery@39#
later introduced a power law creep compliance function t
gives liquidlike behavior at long times. This was used by H
et al. @41# in a JKR contact theory for the loading phase
adhesive solids. Linet al. @42# extended this study to unload
ing, ~crack propagation!. Finally, and of more direct rel-
evance to this work concerned with nonadhesive, repuls
interactions, there have been a number of prior studies
viscoelastic Hertzian contact@32–34,36,37#.

II. MODEL AND ANALYSIS

A. Elasticity

Linear elasticity theory gives the local deformation of t
two solids due to their mutual interaction. The local sepa
tion between the surfaces may be written@9,13#

h~r !5h0~r !2u~r !. ~1!

Here h0(r )5h01r 2/2R is the surface separation of the u
deformed solids at a distancer from the axis. For two
spheres with radiiR1 and R2 the effective radius isR21

[R1
211R2

21. For a sphere interacting with a planar substr
this is the actual radius. More generally,R may be given in
terms of the principal radii of curvature of the solids@44#.
The total elastic deformation is given by@9,45#

u~r !5
22

pEE ds
p„h~s!…

ur2su
5

22

E E
0

`

ds sk~r ,s!p„h~s!…,

~2!

where the elasticity parameter is given in terms of Youn
modulus and Poisson’s ratio of the bodies, 2/E[(1
2n1

2)/E11(12n2
2)/E2, and where the kernel is expressib

in terms of the complete elliptic integral of the first kin
@9,45#. Herep(h) is the pressure between two infinite plan
at a separationh. The form appropriate for electric doubl
layer interactions is given below.

B. Viscoelasticity

In viscoelasticity theory the effective Young’s modulus
time dependent and its reciprocal is sometimes called
creep compliance function,C(t)51/E(t). Simple viscoelas-
tic materials are characterized by short-time and long-t
behavior,C(t)→1/E0 , t→0, andC(t)→1/E` , t→`. Due
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to relaxation or creep, viscoelastic materials are initially s
and soften over time,E0.E` . The simplest type of vis-
coelastic material is characterized by the two elastic lim
and a characteristic relaxation timet,

C~ t !5
1

E~ t !
5

1

E`
1

E`2E0

E0E`
e2t/t. ~3!

Materials of this sort are analyzed in detail here. It should
pointed out that the algorithm can be modified to encomp
materials with multiple relaxation times or with qualitative
different viscoelastic behavior, such as the liquidlike mate
als studied by Schapery@39# and by Hui et al. @41#, C(t)
5C01C1tm, 0,m,1, which corresponds toE`50.

Viscoelastic deformation involves a time integral over t
previous history of the material. The generalization of t
elastic deformation equation given above to viscoelastic m
terials is

u~r ,t !2u~r ,t0!5E
t0

t

dt8
22

pE~ t2t8!
E ds

ṗ„h~s,t8!…

ur2su

5E
t0

t

dt8
22

E~ t2t8!
E

0

`

ds sk~r ,s! ṗ„h~s,t8!…,

~4!

where ṗ„h(s,t)…5p8„h(s,t)…ḣ(s,t) is the time rate of
change of the pressure. The particles are assumed statio
up to time t0 , ḣ(r ,t)50, t,t0, and, if interacting or in
contact, have at that time fixed deformationu(r ,t0)
5u`(r ,t0), corresponding to static elastic equilibrium.
may be verified that this viscoelastic expression reduce
the static elastic result whenE(t)5const. This expression is
essentially equivalent to that used by earlier auth
@34,37,41# in the context of contact theories of viscoelas
interactions. Here it is used for realistic finite ranged surfa
forces. The expression is justified by the so-called corresp
dence principle, in which the material property~Young’s
modulus! becomes time dependent, but the boundary con
tions are unchanged~i.e., the kernel is that of the elasti
half-space approximation of continuum elasticity!.

Because the local separation depends upon the defo
tion, the above is a nonlinear integral equation for the la
that could, in principle, be solved by iteration. However t
time-convolution integral complicates the matter and s
gests a Laplace transform may be in order. An alternativ
to cast the equations in the form of a differential equatio
Using the creep compliance function given above, Eq.~3!,
differentiating with respect to time yields

u̇~r ,t !5
2

ptEt0

t

dt8
E`2E0

E`E0
e2(t2t8)/tE ds

ṗ„h~s,t8!…

ur2su

2
2

pE0
E ds

ṗ„h~s,t !…

ur2su
4-2
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5
21

t F 2

pE`
E

t0

t

dt8E ds
ṗ„h~s,t8!…

ur2su

1u~r ,t !2u~r ,t0!G2
2

pE0
E ds

ṗ„h~s,t !…

ur2su

5
21

t
@u~r ,t !2u`~r ,t !1u`~r ,t0!2u~r ,t0!#

2
2

pE0
E ds

ṗ„h~s,t !…

ur2su
. ~5!

Here u` is the static deformation that would occur in th
long-time limit if the pressure profile were fixed at its curre
value,

u`~r ,t !5
22

pE`
E ds

p„h~s,t !…

ur2su
. ~6!

As mentioned above, if the trajectory starts from the fu
relaxed state, which is normally the case ifṗ(t)50, t,t0,
then u`(r ,t0)2u(r ,t0)50. However this term is here re
tained explicitly to account for the possibility of a sudd
impulse applied att5t0. The rate of change of the pressu
is

ṗ„h~r ,t !…5p8„h~r ,t !…@ ḣ0~ t !2u̇~r ,t !#. ~7!

Hence if the current deformation is known, which means t
p8„h(r ,t)… is fixed, then Eq.~5! represents alinear integral
equation for the rate of change of deformation. It can
solved by iteration usingpreciselythe same algorithm tha
has been developed for the static elastic problem@9,13#. It is
then a simple matter of time stepping to solve the differen
equation for a specified trajectoryh0(t), u(r ,t1D t)
5u(r ,t)1D tu̇(r ,t). Perversely, the viscoelastic problem a
tually turns out to be less demanding computationally th
the corresponding elastic case.

C. Multiple relaxation times

The formalism and algorithm is readily extended to m
terials with multiple relaxation times. Suppose that the cre
compliance function is of the form

C~ t !5(
i 50

n

cie
2t/t i, ~8!

with, for example,ci5Ei
212Ei 11

21 . Taking En5E` , En11

5`, and tn5`, this reduces to the simpler form give
above in the case thatn51. Usually one would haveE0
.E1.•••.En , and t0,t1,•••,tn21, and if t i!t
!t i 11, thenC(t)'1/Ei 11. The total deformation is

u~r ,t !2u~r ,t0!5(
i 50

n

ui~r ,t !, ~9!
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where the partial deformations represent the contribut
from each mode and are defined by

ui~r ,t !5
22ci

p E
t0

t

dt8 e2(t2t8)/t iE ds
ṗ„h~s,t8!…

ur2su
. ~10!

In view of the fact thattn5`, for i 5n this reduces to

un~r ,t !5
22

pE`
E ds

p„h~s,t !…2p„h~s,t0!…

ur2su

5u`~r ,t !2u`~r ,t0!. ~11!

As above, differentiation with respect to time yields

u̇i~r ,t !52ui~r ,t !/t i2
2ci

p E ds
ṗ„h~s,t !…

ur2su
, ~12!

where the rate of change of pressure depends upon the
velocity and the total rate of change of deformation, as giv
above. Hence if the current partial deformations are kno
this represents a set of coupled linear integral equations
theu̇i(r ,t). These may be obtained by iteration by essentia
the same procedure as in the single relaxation time c
Note that because one needs only evaluate a single conv
tion integral per iteration, there is negligible increase in t
computational time required in going from one to seve
relaxation times. Likewise, the memory required increa
negligibly, since the deformations are linear in the numbe
grid points whereas the kernal is quadratic. The deforma
trajectory again follows by simple time stepping,ui(s,t
1D t)5ui(s,t)1D tu̇i(s,t).

D. Load and pressure

In this paper the mutual pressure acting between the
faces is taken to be a linear Poisson-Boltzmann form for
electric double layer repulsion, plus a short-range soft w
repulsion that is derived from a 1/r 212 intermolecular repul-
sion,

p~h!5Pe2kh1Pw~z0 /h!9. ~13!

The second term is only effective at very small separatio
in this work z050.5 nm andPw5P. A Debye length of
k2151 nm corresponds to 0.1 M monovalent binary aqu
ous electrolyte, andP5107 N m22 corresponds to a surfac
potential of about 85 mV, which is about the upper limit
what is typically encountered.

The total load is simply the integral of the surface for
density,

F~ t !52pE
0

`

p„h~r ,t !…r dr . ~14!

This applies for both the elastic and the viscoelastic case
For the present repulsive pressure, as the bodies

driven towards each other the load becomes more pos
and the deformation more negative. This is called loadi
Conversely, unloading corresponds to an increasing~more
4-3
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PHIL ATTARD PHYSICAL REVIEW E 63 061604
positive! deformation and decreasing load as the center
the bodies are separated. To distinguish between the
formed and undeformed separations,h0(t) will be called the
position, andh(t) will be called the separation.

E. Slowly varying deformation approximation

The so-called slowly varying deformation approximati
was introduced by Attard and Parker@9# to account for the
elastic deformation in the weak deformation limit. It turne
out to give analytic results and to be quite accurate for
precontact situation. Here an analogous approximation is
veloped for the viscoelastic problem. The approximat
consists of replacing the deformation everywhere by
value on the central axis,

u~r ,t !'u~0,t ![u~ t !. ~15!

This is inaccurate away from the central axis, but since
pressure rapidly decays to zero in this region, the error in
duced is negligible, at least for small deformations. In t
approximation Eq.~5! becomes

u̇~ t !5
21

t
@u~ t !2u`~ t !#1

4Pk

E0
E

0

`

dsexp$2k@h0~ t !

1s2/2R2u~ t !#%@ ḣ0~ t !2u̇~ t !#

5
21

t
@u~ t !2u`~ t !#1

4Pk

E0
ApR

2k
exp$2k@h0~ t !

2u~ t !#%@ ḣ0~ t !2u̇~ t !#, ~16!

which may be solved foru̇(t),

u̇~ t !5
f ~ t !ḣ0~ t !2@u~ t !2u`~ t !#/t

11 f ~ t !
, ~17!

where f (t)[A8pkRP2/E0
2 exp$2k@h0(t)2u(t)#%. In this

equation

u`~ t !5
22

pE`
2pE

0

`

ds Pexp$2k@h0~ t !1s2/2R2u~ t !#%

5
2E0

E`k
f ~ t !. ~18!

For a given trajectoryh0(t), the deformationu(t) is readily
obtained from the equation foru̇(t) by simple time stepping
a calculator or spreadsheet suffices.

An analytic solution to this differential equation can b
obtained at large separations whenf (t) can be neglected
compared to unity in the denominator, and whereku(t)!1
and can be neglected in the exponent. For a linear trajec
h0(t)5h01ḣt, taking t050, the approximate differentia
equation becomes
06160
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u̇~ t !5
2u~ t !

t
1Fkḣ

E0
2

1

tE`
GA8pRP2

k
e2kh0e2kḣt.

~19!

The solution that vanishes att50 is

u~ t !5A@e2kḣt2e2t/t#, ~20!

where

A5
kḣtE0

212E`
21

12kḣt
A8pRP2

k
e2kh0. ~21!

Sinceḣ,0, one sees that the deformation is always negat
which corresponds to flattening. The parameterkḣt controls
which of the two values of the elasticity dominate. For m
terials with short relaxation times, or long-ranged intera
tions, or for slow driving velocities, this reduces to the sta
elastic result withE5E` . In the opposite limit one obtains
the static elastic result corresponding toE5E0.

A formal series solution can be given to the above wh
the denominator is retained, but withku(t) neglected in the
exponent. However this is not particularly useful and it is
little inconsistent to retain higher powers off (t) while ne-
glecting powers ofu(t), since the two functions are of th
same order.

In the slowly varying deformation approximation th
force is given by@9#

F~ t !52pRk21P exp$2k@h0~ t !2u~ t !#%. ~22!

This result turns out to be the same as the Derjaguin appr
mation, except that the planar interaction free energy per
area is calculated at the actual separationh(t), ~as given by
the approximation!, rather than at the nominal separatio
h0(t).

The slowly varying deformation approximation can al
be used to obtain the response to a harmonic perturba
which enables a spectroscopic analysis of the viscoela
interaction. A driving functionh0(t)5h01h sinvt to linear
order produces a response in the central deformationu(t)
5u(t0)1n sin(vt1f). Linearization of the differential equa
tion with respect toh andn and equating the coefficients o
the trigonometric functions yields

tan~u1f!5
2E0

E`vt
~23!

and

n5h
c

11c

cosu

cos~u1f!
, ~24!

where

tanu52~11cE0 /E`!/vt~11c!,

and
4-4
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c5A8pkRP2/E0
2 exp$2k@h02u~ t0!#%.

The corresponding force is also harmonic,F(t)5F(t0)@1
1a sin(vt1x)#, and using Eq.~22! one has

tanx5
2n sinf

h2n cosf
~25!

and

a5kAh21n222hn cosf. ~26!

In the low frequency limitv→0, it is straightforward to
show thatf→0, x→0, n→2khu(t0)/@12ku(t0)#, and
a→kh/@12ku(t0)#, where the central deformation in th
slowly varying deformation approximation is the solution
u(t0)52E0c/E`k.

III. RESULTS

Figure 1 shows the resultant force when two particles
contact and equilibrated ath0525 nm are suddenly move
62 nm. The change in position is almost a step chan
since its duration~0.1 ms! is small compared to the relax
ation time of the material. The initially large repulsion im
mediately following the step is characteristic of a stiff ma
rial, E051010 N m22. Over time the repulsion decreases
the material relaxes to accommodate the new configurat
on long time scales the particle appears softer,E`

5109 N m22. The behavior of two materials with differen
relaxation times are compared. It may be seen thatt may be
obtained from the slope of the force difference on a log p
~inset!. At h0525 nm it is 0.50t, and ath051.5 nm it is
0.66t ~not shown!. The material with the longer relaxatio
time shows a higher peak force due to the fact that there

FIG. 1. Load relaxation following a sudden step in positio
Following equilibration ath0525 nm, over 0.1 ms a 2 nmstep
inward has been made toh0527 nm ~upper curves! or outward to
h0523 nm ~lower curves!. The plain and bold curves are fo
t51 and 2 ms, respectively. The other parameters areP
5107 N m22, k2151 nm,E051010 N m22, E`5109 N m22, and
R510 mm. The inset shows the force on a log scale, with the fi
force beingF* 51.59 and 0.66mm, for loading and unloading
respectively.
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smaller contribution fromE` during the finite time of the
step. There is an asymmetry evident between loading
unloading. It requires a greater increase in load to move
particles together a given amount than to separate them

Figure 2 shows the precontact deformation as the parti
are uniformly driven together. The deformation is negati
which corresponds to flattening of the particles under th
mutual repulsion. At a given positionh0, the deformation is
greater at the slower driving speed because the soft com
nent of the elasticity has more time to take effect. Convers
and consequently, the force is greater at the faster driv
speed because the surface separation of the effectively s
material is smaller at a given position~not shown!.

The slowly varying deformation approximation is qui
good and it accurately accounts for the viscoelastic beha
prior to contact. The numerical solution of the differenti
equation, Eq.~17!, may be described as quantitatively acc
rate. The analytic approximation, Eq.~20!, works well at
large separations but overestimates the deformation clos
contact whenku(t) is no longer negligible.

The actual load at a given position is compared with t
for rigid particles in the inset of Fig. 2. It can be seen that
requisite load is reduced because the surface separation
tween deformed particles at a given position is greater t
that between undeformed particles. This effect is quite cl
in the elastic Derjaguin approximation, Eq.~22!. It may be
seen from the inset that this approximation is quite accu
for the two slowly varying deformation expressions.

Force spectroscopy was carried out on the particles
mean position ofh052 nm, which corresponds to a mea
load of 61.0 nN and a mean deformation of20.46 nm. A
sinusoidal change in position of amplitude 0.1 nm was ma
and the response in force monitored using the exact
coelastic response, Eq.~5!. Figure 3 gives the relative ampli
tude and the tangent of the phase angle. The curves are
tively smooth and featureless. The amplitude of the respo

.

l

FIG. 2. Test of the slowly varying deformation approximatio
The relaxation time ist51 ms, all other relevant parameters as

Fig. 1. A constant driving velocity ofḣ055 ~upper! and of
1 mm s21 ~lower! is used. The symbols represent the exact cal
lation, the solid curves are the full differential equation, Eq.~17!,
and the dashed curves are the analytic approximation Eq.~20!. The
inset shows the corresponding forces normalized by the radius

ḣ051 mm s21, with the bold curve representing the infinitely rigi
case~no deformation!.
4-5
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PHIL ATTARD PHYSICAL REVIEW E 63 061604
is constant at low and high frequencies, with the latter hav
the larger amplitude, as one might expect from the gre
stiffness on small time scales. The transition between the
regimes occurs atv50.78t21 ~cf., discussion of Fig. 1!. At
this frequency the phase angle is a maximum at 7°, an
decays to zero at the two frequency extremes.

Figure 3 also tests the numerical slowly varying deform
tion approximation Eq.~17!, and the analytic approximatio
Eq. ~25!. The latter two are nearly coincident, which show
the value of the analytic approximation. The slowly varyi
deformation approximation tends to overestimate the ph
factor and to underestimate the amplitude at low frequenc
but overall describes the harmonic response very well. I
tedious but straightforward to show that in this approxim
tion the peak in the phase lag occurs at a frequencyv0 given
by (v0t)25(11cE0/E`)/(11c). For h052 nm this
gives v0

2150.85t, in reasonable agreement with the exa
calculation.

FIG. 3. Spectroscopic response in force to an oscillatory drive
amplitudeh50.1 nm applied abouth052 nm. The symbols are the
exact calculation, and the curves are the slowly varying deforma
approximation, the full curve being the complete result, Eq.~17!,
and the almost coincident dashed curve being the analytic app
mation to it, Eq.~25!. Heret51 ms, the logarithm is base 10, an
all other relevant parameters as in Fig. 1. The inset shows the e
~bold! and approximate~plain! force for a driving frequency ofv
5200 rad s21.

FIG. 4. Exact response to a driven oscillation under a high lo
@F`(h0)51.08 mN, h0525 nm andh51 nm, the logarithm is
base 10, all other parameters as in the preceding figure#. The line
simply connects the measured data points.
06160
g
er
o

it

-

se
s,
is
-

t

Figure 4 carries out the force spectroscopy ath0525
nm. The relatively high load of 1.08mN used here is suffi-
cient to cause noticeable surface flattening. The slowly va
ing deformation approximation is not designed to cope w
such large and variable deformations, and it is inappropr
to compare it with the exact calculations in this regime. T
behavior in contact is qualitatively similar to that shown
Fig. 3 prior to contact, with some quantitative difference
The peak in the phase is more pronounced, with the ph
angle now being 38°, and it has shifted tov52/t, ~cf., the
inset to Fig. 1!. Also at this frequency the step in amplitud
corresponds to about a factor of 4 increase in this case, c
pared to a factor of 1.3 in Fig. 3.

Perhaps the most common type of deformation meas
ment is concerned with particle loading and unloading us
a triangular drive velocity. Such a measurement is mode
in Fig. 5 for several drive speeds. Negative values of
position would correspond to interpenetration of the un
formed surfaces, as evinced by the almost vertical force
tween the rigid particles of the figure ash0→01. For de-
formable surfaces such negative values are allowed a
since the deformation is negative, they correspond to posi
separations,h(r ,t)5h0(r ,t)2u(r ,t). The force is increas-
ingly repulsive in this regime. What is also noticeable is t
hysteresis between the loading and the unloading branc
and the fact that this increases with drive speed. On the lo
ing branch, the force-position curve for the viscoelastic p
ticles lies between the equilibrium elastic results forE` and
E0. Slow driving speeds show a more gradually increas
repulsion and lie closer to the long-term elastic value, as
might expect. As the speed increases the loading cu
move towards the equilibrium result for the instantaneo
elastic modulus, which has a more sharply increasing re
sion. On the unloading branch, there is initially a rapid d
crease in the force immediately following the turning poin
This behavior originates in the nature of the change in
surface shape, as will be discussed shortly. Much of the
loading branch lies beneath the static curve correspondin
E` , and for slow enough driving speed one can well imag

f

n

xi-

act

,

FIG. 5. Force hysteresis loops for a triangular drive. The para
eters are as in Fig. 1, witht51 ms, and with drive velocities of

ḣ0561, 62, and 65 mm s21, from inside to outside, respec
tively. The bold curve is the rigid, undeformable particle result, a
the triangles and crosses are the static, equilibrium result foE
5109 and 1010 N m22, respectively.
4-6
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that the two branches will coalesce on it. The fact that
force upon unloading is less than that on loading at a gi
position gives the appearance that the surfaces come
contact~i.e., measurably interact! on approach at a greate
position than they come out of contact upon retraction. T
reason for this will also be discussed shortly.

Figure 6 shows the contact radius for the triangular dr
just discussed. The surfaces were defined to be in con
wherever the local separation was less than 1 nm, whic
the decay length of the double layer repulsion used here.
any finite ranged surface force the definition of contact
arbitrary, but any reasonable definition gives qualitativ
similar behavior to that shown in Fig. 6. In general the co
tact area increases with increasing applied load. As for
force, the hysteresis between loading and unloading
creases with driving velocity and the static instantane
elastic result provides an upper bound for the loading bra
that is approached as the driving velocity is increased.

At first sight it might appear counterintuitive that the pa
ticles that are driven faster, and that are therefore effectiv
stiffer, exhibit a greater contact area on approach than
more slowly driven particles. The explanation becomes c
upon examining the loading region where the contact fi
becomes nonzero. For the fastest driving velocity this occ
just beyondh051 nm, which indicates little flattening ha
occurred. Conversely, contact does not occur until abouh0
520.5 nm for the slowest driving velocity, due to substa
tial surface flattening. In other words, one should not conf
deformation with contact area for particles that interact w
finite surface forces.

The contact radius hysteresis is similar to the force h
teresis in that it is due to the rapid decrease immedia
following the turnaround. This behavior is particular
marked for the fastest driving velocity. A picture of what
occurring may be gleaned from Fig. 7. The asymmetry
tween the loading and unloading surface shapes is due to
finite time over which the measurement is performed. It
clear that on loading the surfaces become relatively flatten
and their shape particularly at the center is largely de
mined by the geometry and the position rather than by
elastic parameters. Immediately after the turnaround, the
tened regions separate as a whole rather than peeling

FIG. 6. Contact radius hysteresis loops for the same cases a
preceding figure. Contact was defined as a local surface separ
of less than 1 nm.
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the edge, which is what they would do in the elastic ca
This is the reason that the contact radius and the force d
so rapidly on the initial part of the unloading branch. Ov
the time of unloading the flattened regions relax to th
more naturally curved shape. Even though the final unlo
ing profile ath0510 nm is beyond the range of the surfa
force, at the high velocity of the figure full relaxation has n
yet occurred, and one can see that the surfaces still reta
memory of their contact.~The duration of the unloading
branch was 2 ms, which is twice the relaxation time,t51
ms.! This remnant flattening means that for a given posit
the surfaces are at a greater separation on unloading tha
loading, and hence the force and the contact area go rap
to zero upon unloading, as shown in Figs. 5 and 6.

Finally, Fig. 8 shows the unloading force for sever
maximum applied loads. The unloading branches initia
differ from each other, as they must as a consequence o
hysteresis. But after sufficient time all the unloading curv
coalesce on a single envelope. This behavior is very sim
to that of adhesive particles previously explored@13,14#. At
large separations where the force is weak, the loading

the
ion

FIG. 7. Surface profiles for theuḣ0u55 mm s21 case of Fig. 6. A
snapshot of the local separation is plotted as a function of the la
radius every 0.4 ms, or every 2 nm fromh0510 to h05210 nm
and back. The right hand panel is for loading, and the left ha
panel is for unloading. The loading profile ath0510 nm is essen-
tially undeformed.

FIG. 8. Force loops for different penetrations. The parame

are as in Fig. 6, with a drive velocity ofuḣ0u55 mm s21, and
turning points ofh050, 23, 25, 27, and210 nm.
4-7
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unloading forces are exponentially repulsive, as is eviden
the linear tail in the logarithmic inset.

IV. CONCLUSION

This paper has been concerned with the viscoelastic
formation of particles and surfaces during their interaction
general formulation of the problem for finite-ranged surfa
forces was given, and a numerical algorithm was presen
for materials with one or more relaxation times. The alg
rithm is applicable to both loading and unloading, and inde
to an arbitrary trajectory. Results were presented for a re
sive double layer interaction for step, triangular, and si
soidal drives. An analytic approximation applicable
slowly varying deformations was developed and shown to
accurate in the precontact regime.

In general at a given position the repulsion upon load
was less than that between rigid particles, and it lay betw
that of elastic particles corresponding to the short and lo
time limits of the creep compliance function. Force spectr
copy revealed a peak in the phase lag and a step in
amplitude, which is characteristic of materials with a sing
relaxation time. Hysteresis was observed between the lo
ing and unloading branches, and it increased with driv
l

l

m
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velocity and the relaxation time of the materials, with t
unloading force and contact radius being less than the lo
ing at a given position. This behavior originated in the d
ferences in the contact region dynamics due to the viscoe
tic nature of the materials. On loading the surfaces fold i
contact from the edge, whereas during unloading they p
apart as a whole rather than peel apart from the edge, re
ing their flattened shape for a short time after contact.

The present theory for viscoelastic deformation and int
actions is very general and the algorithm is robust and co
putationally simple. In the next paper in the series it will
applied to adhesive particles. In future work it is hoped
present analytic results for viscoelastic Hertz and JKR c
tact theories, and to analyze quantitatively experimental d
using the full theory with realistic finite-ranged surfac
forces.
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